Tetramethylammonium Tetraiodocadmate(II)

By A. Kallel* and J. W. Bats
Institut für Kristallographie der Universität Frankfurt, Senckenberganlage 30, D-6000 Frankfurt am Main, Federal Republic of Germany

and A. Daoud
Laboratoire de Chimie Minérale, Faculté des Sciences et Techniques de Sfax, Tunisia

(Received 26 September 1980; accepted 13 October 1980)

Abstract

N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\mathrm{CdI}_{4}\right], 2 \mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}^{+} . \mathrm{CdI}_{4}^{2-}\), orthorhombic, Pnma, $a=13.403$ (3), $b=9.724$ (2), $c=$ 16.893 (9) $\AA, V=2202$ (2) $\AA^{3}, Z=4, M_{r}=768.29$, $D_{c}=2 \cdot 32, D_{m}=2.30(5) \mathrm{Mg} \mathrm{m}^{-3}, \mu=6.60 \mathrm{~mm}^{-1}$. 1020 non-equivalent reflections were measured up to $\sin \theta / \lambda=0.48 \AA^{-1} ; R(F)=0.067, R_{w}(F)=0.050$.

 The structure consists of isolated CdI_{4} and $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}$ tetrahedra and is isomorphous with its $\mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Cu}$, Zn and Hg halogenide analogues. The average $\mathrm{Cd}-\mathrm{I}$ length is 2.790 (3) \AA; the $\mathrm{I}-\mathrm{Cd}-\mathrm{I}$ angles range from 108.05 (6) to $113 \cdot 13(8)^{\circ}$. The $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}$ groups are affected by large oscillations.Introduction. Colourless crystals of the title compound were obtained from an aqueous solution of $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4} \mathrm{I}$ and CdI_{2}. A crystal $0.12 \times 0.16 \times 0.22 \mathrm{~mm}$ was selected for the experiments. Precession photographs showed orthorhombic symmetry with the space group either $P n 2_{1} a$ or Pnma.

Data were collected on a Syntex $P 2_{1}$ diffractometer with Nb -filtered Mo $K \alpha$ radiation. Three equivalent reflections were measured up to $\sin \theta / \lambda=0.48 \AA^{-1}$, yielding 3251 reflections. Background corrections were made by profile analysis (Blessing, Coppens \& Becker, 1974). A test reflection observed after every 50 reflections showed long-range fluctuations up to 13%, attributed to variations in the incident-beam intensity and counter response. The data were rescaled with respect to the standard. An absorption correction resulted in transmission factors ranging from 0.36 to 0.48 . The equivalent reflections were averaged ($R=$ $\left.\sum|I-\langle I\rangle| / \sum I=0.036\right)$, resulting in 1111 non-equivalent reflections. 1020 of them had $I>0$ and were used for the structure determination and refinement.

The positions of the Cd and I atoms were determined with MULTAN (Main, Woolfson, Lessinger, Germain \& Declercq, 1974). The positions of C and N

[^0]0567-7408/81/030676-02\$01.00

Table 1. Positional parameters and equivalent DebyeWaller factors

$$
B_{\mathrm{eq}}=\frac{8}{3} \pi^{2} \text { trace } \tilde{\mathrm{U}} .
$$

	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
Cd	0.7538 (1)	0.75	0.9061 (1)	5.8
I(1)	$0 \cdot 8226$ (1)	0.75	1.0596 (1)	9.8
I(2)	0.5474 (1)	0.75	$0 \cdot 8959$ (1)	7.9
I(3)	0.8249 (1)	0.9842 (1)	0.8321 (1)	10.3
$\mathrm{N}(1)$	0.348 (2)	0.25	0.400 (1)	7.6
N(2)	0.029 (1)	0.25	0.662 (1)	$6 \cdot 1$
C(1)	0.392 (3)	0.25	0.460 (3)	24
C(2)	$0 \cdot 246$ (3)	0.25	0.402 (2)	23
C(3)	0.376 (3)	0.348 (4)	0.351 (2)	25
C(4)	0.058 (2)	0.25	0.745 (2)	13
C(5)	$0 \cdot 105$ (2)	0.25	0.605 (2)	19
C(6)	-0.024 (2)	0.360 (3)	0.643 (1)	22

Table 2. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

	Uncorrected	Corrected for libration
$\mathrm{Cd}-\mathrm{I}(1)$	$2.753(3)$	$2.781(3)$
$\mathrm{Cd}-\mathrm{I}(2)$	$2.771(2)$	$2.790(2)$
$\mathrm{Cd}-\mathrm{I}(3)$	$2.767(2)$	$2.798(2)$
$\mathrm{N}(1)-\mathrm{C}(1)$	$1.18(5)$	$1.39(5)$
$\mathrm{N}(1)-\mathrm{C}(2)$	$1.36(4)$	$1.58(4)$
$\mathrm{N}(1)-\mathrm{C}(3)$	$1.31(4)$	$1.55(4)$
$\mathrm{N}(2)-\mathrm{C}(4)$	$1.45(4)$	$1.51(4)$
$\mathrm{N}(2)-\mathrm{C}(5)$	$1.40(3)$	$1.59(4)$
$\mathrm{N}(2)-\mathrm{C}(6)$	$1.33(3)$	$1.56(4)$
$\mathrm{I}(1)-\mathrm{Cd}(\mathrm{I}(2)$	$113.13(8)$	$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(3)$
$\mathrm{I}(1)-\mathrm{Cd}-\mathrm{I}(3)$	$108.05(6)$	$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(3)$
$\mathrm{I}(2)-\mathrm{Cd}-\mathrm{I}(3)$	$108.43(5)$	$\mathrm{C}(4)-\mathrm{N}(2)-\mathrm{C}(5)$
$\mathrm{I}(3)-\mathrm{Cd}-\mathrm{I}(3)$	$110.76(7)$	$\mathrm{C}(4)-\mathrm{N}(2)-\mathrm{C}(6)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(2)$	$118(2)$	
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(3)$	$114(2)$	$\mathrm{C}(5)-\mathrm{N}(2)-\mathrm{C}(6)$
		$\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{C}(6)$
		$103(2)$

resulted from an additional difference synthesis. The structure was refined in the centrosymmetric space group Pnma to $R(F)=0.067, R_{w}(F)=0.050$ and $S=$ $\left[\sum w\left(F_{o}-F_{c}\right)^{2} /\left(n_{o}-n_{\nu}\right)\right]^{1 / 2}=2 \cdot 25$. Scattering factors were from International Tables for X-ray Crystallography (1974). Anomalous-dispersion factors were
applied to Cd and I (Cromer \& Liberman, 1970). An isotropic extinction correction was made (Larson, 1969). A final difference synthesis showed no peaks higher than $0.6 \mathrm{e} \AA^{-3}$. No H atoms could be located because of the high thermal vibrations of the methylammonium groups. The calculations were carried out with the XRAY system (Stewart, Kruger, Ammon, Dickinson \& Hall, 1972) on the Univac 1108 computer of the University of Frankfurt. The atomic coordinates are reported in Table 1, bond lengths and angles in Table 2.*

Discussion. This study is part of the determination of the crystal structures with general formula $\left[\mathrm{NH}_{4-x} R_{x}\right]_{2}\left[M X_{4}\right]$, where $R=$ alkyl, $X=\mathrm{Cl}$, Br or I, and M is a divalent metal atom. Some of these structures contain isolated $M X_{4}$ groups, while others contain linear chains of corner-sharing $M X_{6}$ octahedra with short $M \cdots M$ interactions. The latter are of interest because of possible low-dimensional magnetic interactions.

A stereoscopic view of the title compound is shown in Fig. 1. The structure consists of isolated $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}$ and CdI_{4} tetrahedra. The average $\mathrm{Cd}-\mathrm{I}$ distance (corrected for libration) is $2.790(3)$, the average $\mathrm{C}-\mathrm{N}$ distance 1.53 (4) \AA.

The structure is isomorphous with the corresponding $\left[\mathrm{ZnCl}_{4}\right]^{2-},\left[\mathrm{CoCl}_{4}\right]^{2-},\left[\mathrm{NiCl}_{4}\right]^{2-}$ (Wiesner, Srivastava, Kennard, Divaira \& Lingafelter, 1967),

Fig. 1. Stereoscopic view of the structure. The thermal ellipsoids are the 50% probability surfaces.
$\left[\mathrm{FeCl}_{4}\right]^{2-}$ (Lauher \& Ibers, 1975), $\left[\mathrm{CuCl}_{4}\right]^{2-}$ (Clay, Murray-Rust \& Murray-Rust, 1975), $\left[\mathrm{HgBr}_{4}\right]^{2-}$, $\left[\mathrm{HgCl}_{4}\right]^{2-}$ and $\left[\mathrm{HgI}_{4}\right]^{2-}$ (Kamenar \& Nagl, 1976) complexes. The $\mathrm{I}-\mathrm{Cd}-\mathrm{I}$ angles range from 108.05 (6) to $113.13(8)^{\circ}$. A similar distortion has been found in the analogous complexes and may result from packing effects. Only for $\left[\mathrm{N}_{\left.\left(\mathrm{CH}_{3}\right)_{4}\right]_{2}\left[\mathrm{CuCl}_{4}\right] \text {, where a Jahn- }}\right.$ Teller distortion is significant, has a much more distorted tetrahedron been reported.

All the C atoms of the tetramethylammonium groups show large thermal parameters $\left(\left\langle U^{2}\right\rangle^{1 / 2} \simeq 0.51 \AA\right)$. This indicates either disorder or rotation of these groups. A rigid-body analysis (Schomaker \& Trueblood, 1968) of these groups gave no significant differences between the observed and calculated thermal parameters. This indicates that large oscillations are the most likely explanation for the thermal parameters of the C atoms.

One of the authors (AK) thanks the Deutscher Akademischer Austauschdienst for financial support.

References

Blessing, R. H., Coppens, P. \& Becker, P. (1974). J. Appl. Cryst. 7, 488-492.
Clay, R., Murray-Rust, J. \& Murray-Rust, P. (1975). Acta Cryst. B31, 289-290.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.
Kamenar, B. \& Nagl, A. (1976). Acta Cryst. B32, 14141417.

Larson, A. C. (1969). Crystallographic Computing, edited by F. R. Ahmed. Copenhagen: Munksgaard.
Lauher, J. W. \& Ibers, J. A. (1975). Inorg. Chem. 14, 348-352.
Main, P., Woolfson, M. M., Lessinger, L., Germain, G. \& Declercq, J. P. (1974). MULTAN 74. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Schomaker, V. \& Trueblood, K. N. (1968). Acta Cryst. B24, 63-76.
Stewart, J. M., Kruger, G. J., Ammon, H. L., Dickinson, C. \& Hall, S. R. (1972). The XRAY system - version of June 1972. Tech. Rep. TR-192. Computer Science Center, Univ. of Maryland, College Park, Maryland.
Wiesner, J. R., Srivastava, R. C., Kennard, C. H. L., Divaira, M. \& Lingafelter, E. C. (1967). Acta Cryst. 23, 565-574.

[^0]: * Permanent address: Faculté des Sciences, Département de Physique, Campus Belvedère, Tunis, Tunisia.

